
JOURNAL OF APPROXIMATION THEORY 55, 264-269 (1988)

Strongly Chebyshev Subspaces of Matrices

A. GUYAN ROBERTSON

Department of Mathematics, University of Edinburgh,
Edinburgh EH9 3JZ, United Kingdom

Communicated by T. J, Rivlin

Received June 11, 1985; revised August 29, 1986

1. INTRODUCTION

Hilbert spaces have a unique position in abstract approximation theory.
For example, every closed linear subspace of a Hilbert space is a
Chebyshev subspace and the proximity map is even linear, being given by
the orthogonal projection map. A Hilbert space can, however, be
isometrically embedded in a normed linear space which is less well behaved
from this point of view and the question arises of how elements in the
larger space can be approximated from the Hilbert space. We shall be con
cerned with finite dimensional real Hilbert spaces (i.e., Euclidean spaces)
which are naturally embedded in the space Mn(lR) of real n x n matrices,
endowed with the spectral norm. Such embeddings arise naturally in
geometry when Mn(lR) is regarded as the Clifford algebra of a Euclidean
space E [4, Chap. 13]. We shall show that E is then'a Chebyshev subspace
of Mn(ll~).

Our result holds for a slightly more general class of subspaces of Mn(lR),
but the phenomenon is essentially restricted to real matrices, thus
demonstrating a purely geometric difference between Mn(lR) and the nor
med linear space Mn(C) of complex n x n matrices. The main result allows
us to characterize the strongly Chebyshev subspaces of Mn(lR), these being,
by definition, those subspaces "Y' having the property that every subspace
of "Y' is Chebyshev in M n( IR). A classical result in topology [1] can then be
interpreted as specifying the maximum possible dimension of a strongly
Chebyshev subspace of Mn(lR).

2. LINEAR SUBSPACES OF GL(n, IR)

In what follows M n( IR) is regarded as a normed linear space with the
spectral norm induced by the usual Euclidean norm on IRn [3]. Thus IIAII
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will denote the spectral norm of a matrix and Ilvll = (V
T

V)1/2 the Euclidean
norm of a vector v E IR n

• GL(n; IR) denotes the set of nonsingular matrices in
M n(IR). A linear subspace ofGL(n; IR) is a linear subspace j/ of M n(lR) hav
ing the property that every nonzero matrix in j/ is nonsingular [4, p. 272].
Such subspaces arise naturally in algebraic topology in connection with
linearly independent vector fields on spheres [4, Theorem 20.68]. Par
ticularly important examples of linear subspaces of GL(n; IR) are what we
shall call Clifford subspaces. These have the property that XTX= IIXI1 2/for
all X E j/, and are constructed in [4, Prop. 13.67]. Simple examples of Clif
ford subspaces are provided by the usual embedding of the complex num
bers as a linear subspace of M 2(1R) or of the quaternions in M 4(1R). A Clif
ford subspace j/ of M n(lR) is a Hilbert space in the spectral norm, the
inner product being defined on j/ by the identity

Our first result demonstrates that such subspaces are of interest in
approximation theory. Recall that a linear subspace j/ of a normed linear
space is a Chebyshev subspace if every vector has a unique best
approximant from j/.

THEOREM 1. Let j/ be a linear subspace of GL(n; IR). Then j/ is a
Chebyshev subspace of M n(IR). If j/ is a Clifford subspace and 0 is the best
approximation to A E M n(lR) from j/ then the following Pythagorean
relation holds for all X E j/:

Proof By finite dimensionality best approximations always exist, so we
need only consider the question of uniqueness. It is enough to show that if
A E M n(lR) has 0 as a best approximant from j/ then 0 is the unique best
approximant.

According to [3, Theorem 3], there exist positive scalars A1 , ..., Ak with
LAj = 1 and unit vectors U 1, ... , Uk' V1 , ... , Vk, such that

for all XE j/

and

for 1~J~k.

The latter condition implies that we have equality in the Cauchy-Schwarz
inequality, from which it follows that AVj = IIA II Uj' for 1~j ~ k. Also if
X E j/ and X =I- 0 then

LAjvJ AT XVj=LAj IIAII uJ Xvj=O.
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Hence
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IIA _X1I 2 ~L Aj II(A - X) Vjl12

=L Aj IIAI1 2oJ OJ +L AjllXVjl12

= IIAI1 2+ LAj II XVj l1
2

> IIAI1 2,

since X E f\ {O}, so that X is nonsingular. This shows that 0 is the unique
best approximant to A.

Finally, if f is a Clifford subspace then IIXvjf= IIXI1 2for 1 ~:;;j~k, so
that IIA-XI12~ IIAI1 2+ IIXI1 2. I

If f is a Clifford subspace of Mn(lR), we therefore have a well-defined
metric projection n: Mn(lR) --+ f onto f for each A E Mn(lR). The following
continuity property of n follows from the Pythagorean relation in Theorem
1 by exactly the same calculations as in [7, Theorem 3]. We omit the
details.

COROLLARY 2. If f is a Clifford subspace of Mn(lR) then the
corresponding metric projection n satisfies

where A, BEMn(lR) and (j = IIA - BII.

Direct calculation shows that the diagonal matrices form a Chebyshev
subspace of M 2(1R), so that the converse of Theorem 1 is false. However, in
the one-dimensional case, the converse of Theorem 1 is true.

COROLLARY 3. Let X be a nonzero matrix in Mn(IR). IRX is a Chebyshev
subspace of Mn(lR) if and only if X is nonsingular.

Proof IRX is a Chebyshev subspace if X is nonsingular, by Theorem 1.
On the other hand suppose that X is singular. Then there exist unit vectors



CHEBYSHEV SUBSPACES OF MATRICES 267

u, V E IR n such that Xu = 0 and vTX = O. Let Y = VU T. Then XyT = yTX = O.
Therefore, for each AE IR,

II y - AXI1 2 = II (yT - AXT)( Y - AX) II

= II yTy + A2XTXII

= max(11 yTYII, A2 I1XTXII),

where the last equality follows from the fact that (XTX)( yTY) =O. It is
clear from this that II y - XII is constant for small values of A, so that IRX is
not a Chebyshev subspace I

Remark. In [5, Theorem 2.8] a complex infinite dimensional version of
Theorem 1 was proved by different methods. However that complex result
becomes trivial in the finite dimensional case in view of the fact that there
do not exist linear subspaces of GL(n; iC) of dimension greater than one.
For if "Y were such a subspace of GL(n; iC), choose linearly independent
matrices X, Y E "Y. If J1 E iC is an eigenvalue of y~ I X then X - J1 Y =
Y( y~ I X - J1/) is singular, which is a contradiction since X - J1 Y is a non
zero element of "Y.

3. STRONGLY CHEBYSHEV SUBSPACES

Let us call a linear subspace 1~ of a normed linear space "H/ a strongly
Chebyshev subspace if every closed linear subspace of "Y (including "Y
itself) is a Chebyshev subspace of "H/. In the finite dimensional case this is
equivalent to requiring that everyone-dimensional subspace of "Y is
Chebyshev in "H/, since in that case best approximants always exist and if
X, Yare distinct best approximants to an element of"H/ then IR(X - Y) is
not Chebyshev in "H/. Clearly every closed linear subspace of a strongly
Chebyshev subspace is again strongly Chebyshev. Also every strongly
Chebyshev subspace of a normed linear space is strictly convex [6, Chap. I,
Corollary 3.3].

THEOREM 4. A linear subspace "Y of M n(lR) is a strongly Chebyshev
subspace if and only if "Y is a linear subspace of GL(b; IR).

Proof This is an immediate consequence of Theorem 1 and Corol
lary 3. I

For each positive integer n the maximum possible dimension of a linear
subspace of GL(n; IR) is equal to the Hurwitz-Radon number p(n) [1,2].
Moreover this maximum dimension is attained for some Clifford subspace
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of "1/ of M AIR) [4, Theorem 13.68]. Recall that a Clifford subspace is, in
particular, a real Hilbert space embedded in M n(IR).

We can now writ~ down a direct interpretation of these statements
purely in terms of the geometry of M n(IR).

THEOREM 5. The maximum dimension of a strongly Chebyshev subspace
"1/ of M n(lR) is p(n). This maximum is attained for a Hi/bert space "1/.

Remarks. (1) A strongly Chebyshev subspace of M n(lR) need not be a
Hilbert space. For example~ consider all matrices of the form [_a2b ~] in
M 2(1R)·

(2) If the positive integer n is written as an odd multiple of 2a + 4b
, where

a, b are integers and °~ a ~ 3, then by definition p(n) = 2a +8b. Thus
p(n) = 1 if n is odd, so in that case there is no strongly Chebyshev subspace
of M n (lR) of dimension greater than one. Other values of p(n) for small n
are p(2)=2, p(4)=4, p(6)=2, p(8)=8; so, for example, the natural
embedding of the quaternions in M 4 (1R) provides us with an example of a
strongly Chebyshev subspace of maximal dimension.

(3) As previously noted, there is no linear subspace of GL(n; iC) of
dimension greater than one. However the complex versions of Theorem 1
and Corollary 3 are valid. Therefore Mn(C) can contain no strongly
Chebyshev subspace of dimension greater than one, thus providing a
curious geometrical contrast with the case of M n(IR). On the other hand it
was shown in [5, Theorem 2.8] that the algebra of bounded linear
operators on an infinite dimensional complex Hilbert space contains an
infinite dimensional strongly Chebyshev subspace.

Finally, it is natural to ask whether p(n) provides an upper bound on the
dimension of a Hilbert space embedded in M n(IR). The answer is no.

EXAMPLE. Given a, bE IR, define X E M 3(1R) by

f
o a 0]

X= a 0 b .

° b °
Then IIXI1 2 = a2 + b2

, so that the set of such matrices forms a two-dimen
sional Hilbert space Iff embedded in M 3(1R). (Recall that p(3) = 1.)

We can modify our original question and ask if p(n) is an upper bound
on the dimension of a Chebyshev subspace of M n( IR) which is also a
Hilbert space. We do not know the answer. Of course there do exist
Chebyshev subspaces of M n(lR) of dimension greater than p(n). An explicit
example is the set of all matrices with zero trace.
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